Neutrino Factory Acceleration Scenarios

J. Scott Berg
Brookhaven National Laboratory
NFMCC MUTAC Review
16 March 2006

Reutrino Factor

Outline

- Recent work on the RLA
- Tracking in linear non-scaling FFAGs
- Electron model for linear non-scaling FFAG (EMMA)
- Analysis of an isochronous FFAG
- Analysis of a scaling FFAG scheme

The Study IIa Scheme Linac

The Study IIa Scheme Dogbone RLA

Dogbone RLA

- Full linear design exists
 - Needs to be converted into real terms, costed
 - Compare cost per GeV to FFAGs
- Misalignment and gradient error sensitivity studied
 - Orbit distortion manageable with 1 mm magnet displacements
 - Quad field tolerances 0.2%
- Next steps
 - Add sextupoles to get chromatics right
 - Look at beam with finite energy spread

The Study IIa Scheme 5–10 GeV FFAG

The Study IIa Scheme 10–20 GeV FFAG

Tracking in Linear Non-Scaling FFAGs

- 6-D tracking studies have begun on linear non-scaling FFAGs.
 Most codes can't handle FFAGs well.
 - Most of this done by European collaborators (Machida, Méot, Lemuet)
- With real acceleration, particles with high transverse amplitude aren't accelerated properly
 - Not a problem with uniform acceleration (what we tested before)
 - Low transverse amplitudes are fine
- Cause: time of flight depends on amplitude
 - Can predict the dependence:

$$\frac{dT}{d\boldsymbol{J}} = -2\pi p \frac{d\boldsymbol{\nu}}{dE}$$

No effect in scaling FFAGs!

Time of Flight Dependence on Amplitude Different Transverse Amplitudes

Time of Flight Dependence on Amplitude Time of Flight Curves

Tracking in Linear Non-Scaling FFAGs Time of Flight Dependence on Amplitude

- How will we address the problem?
 - Adjust machine parameters to open up the channel more
 - ⋆ More voltage
 - ⋆ Longer ring
 - * Higher harmonic RF
 - ⋆ Costs money
 - Adjust phase space more carefully to optimize what we have
 - ⋆ Current model assumes that time of flight is perfectly parabolic
 - ★ Find best area of overlap (right now, using optimum for low amplitude)

FFAG Electron Model

- Linear non-scaling FFAGs have never been built
- Create an inexpensive model of a linear-nonscaling FFAG
- In the last year we have
 - Refined the experimental goals of the machine
 - Settled on lattice specifications
 - Begun to look at hardware

FFAG Electron Model Basic Experimental Goals

- Study the unique longitudinal dynamics in fixed-frequency linear nonscaling FFAGs
- Study rapid crossing of many weak resonances that occurs in linear nonscaling FFAGs
- Study the effect of errors on the performance of linear nonscaling FFAGs
- Vary machine parameters over a significant range to study these effects as a function of machine parameters
 - RF frequency (part in 10^3)
 - ◆ Magnet gradient (±25%) and dipole field (±50%)
 - Magnet displacement and gradient errors
- Compare results to simulation

FFAG Electron Model Lattice Specification

- We have a well-defined baseline lattice
- 42 cell lattice, approximately 16 m circumference
- Accelerating in 14 turns or less
- Magnets with approximately 0.2 T pole tip fields
 - Gradient dipole
 - Shifted quadrupoles

Acceleration Schemes Isochronous FFAGs (Rees)

- Replace the FFAGs in the NFMCC scheme with "isochronous FFAGs"
- Linear non-scaling FFAGs have a time of flight that depends on energy
 - Difficult to keep bunch synchronized with the RF
 - Puts a lower limit on the required voltage
 - Leads to above described problems
- Use nonlinear magnets to make the FFAG isochronous over the entire energy range
 - Original idea from Rees (RAL)
- Can also use two types of cells: longer cells with RF, shorter cells without (UK baseline)
 - Can reduce machine cost
 - Need to match between: challenge

Isochronous FFAGs with Insertions

Isochronous FFAG: Analysis

- Time of flight variation is exceptionally small
 - Factor of 10 below natural value
- In my computation, vertical tunes go unstable at high energy
 - Possible cause: Rees uses second-order edge effect which I don't
- Tracking results (Méot/Lemuet)
 - Beam loss at high energy end
 - Appears to come from hitting a resonance
 - ⋆ Note it occurs about where I say the lattice goes unstable
 - Highly nonlinear fields at high energy could also be driving it into the resonance
- Not performing acceptably at this point
 - Work has not been put into improving it as yet

Isochronous FFAG Beam Loss

Isochronous FFAGs Fields

Acceleration Schemes Scaling FFAGs

- The NuFactJ scheme (KEK, Japan)
- Scaling FFAGs only for entire neutrino factory, from capture to (not including) storage ring
- 4 stages, 0.3–1 GeV/c, 1–3 GeV/c, 3–10 GeV/c, 10–20 GeV/c
- Idea: this may be inexpensive
 - Avoids the entire front end
- Scaling FFAGs can have large dynamic aperture
 - Arbitrarily large energy acceptance
 - No resonance crossing issues
 - Will it be large enough? Nonlinearities.
- Use low-frequency RF to accelerate
 - Lots of voltage needed at low frequency

Scaling FFAGs FFAGs on Tokai Campus

Scaling FFAG Scenario

- Lattices presented in the NuFactJ report were to give the idea
 - I attempted to replicate the NuFactJ lattices
 - Lattices were not even stable
 - They were constructed out of standard sector magnets, not FFAG magnets
- I produced a set of lattices
 - Used true FFAG magnets
 - Matched the tunes in the NuFactJ report
- Result had large costs
 - ◆ 10–20 GeV was 83% of the entire Study IIa cost, compared with 5% for linear non-scaling FFAG
 - ◆ Reason: large apertures (35–45 cm), high fields (up to 9.4 T)
 - Lower energy lattices should have come out normal conducting (didn't)

My Versions of NuFactJ Lattices Magnet Parameters and Cost

- Further optimization improved 10–20 GeV lattice
 - ◆ 2002 lattices from LBNL FFAG Workshop: 18% of the entire Study IIa cost, lower due to smaller apertures and fields
- Note: no cavities in cost!
 - RF systems used
 - ★ 0.75 MV/m average over ring, air gap, 5–10 MHz
 - ★ First ring may be variable frequency
 - > New type of magnetic alloy core
 - * All this needs more careful specification, R&D, costing

Conclusions

- We have an RLA lattice up to 5 GeV, and analysis is proceeding.
- We are trying to compare different FFAG systems
 - ◆ Linear non-scaling FFAGs are having problems with large amplitude particles. Know how to address, additional costs.
 - Isochronous FFAGs have serious dynamic aperture problems, but more work may address this.
 - Scaling FFAGs look costly, but optimization seems to be helping that. RF may be an issue.
- We have and are continuing to develop a good experimental plan and design for a model to study linear non-scaling FFAGs
- We have significant international collaboration in this effort

